

Bachelor of Education (Elementary) & Bachelor of Education (Secondary) STEM Lesson Plan

	Derivatives through Trigonometric				January 7 th
Lesson Title:	Functions	Lesson #	1	Date:	2021
Name:	Julia Sonnleitner	Subject:	Calculus	Grade(s):	12

Rationale:

This lesson introduces students to the idea of performing derivatives on trigonometric functions. Learning how to derive functions is a foundational skill student will need to not only continue their learning further in calculus courses, but also fundamental in a sciences or business environment. Trigonometric functions can be applied to a wide range of real life scenarios and learning how to derive them helps students understand the how different functions change instantaneously.

Core Competencies:

Communication	Thinking	Personal & Social
Connecting and engaging with others	Students apply critical and	
Working collectively. They are also	reflective thinking to acquire and	
informally present and communicate	interpret information. They are	
their learning to the class. Students	encouraged to think creatively and	
communicate to build and sustain	with curiosity when approaching a	
positive relationships with their	problem.	
peers.		

Big Ideas (Understand)

- Differential calculus develops the concept of instantaneous rate of change.
- The concept of a limit is foundational to calculus.

Learning Standards

(DO)	(KNOW)
Learning Standards - Curricular Competencies	Learning Standards - Content
 Think creatively and with curiosity and wonder when exploring problems Solve problems with persistence and a positive disposition Use mathematical vocabulary and language to contribute to discussions in the classroom Take risks when offering ideas in classroom discourse Reflect on mathematical thinking 	 Differentiation Definition of a derivative Transcendental functions: trigonometric

Instructional Objectives & Assessment

Instructional Objectives (students will be able to)	Assessment	
• Explain to their peers that the derivative of	Assigned Homework (Summative)	
sin(x) is $cos(x)$ in multiple forms	• Interactive group questions (Summative)	
• Prove and evaluate complex limits using the		
definition of a derivative		
• Communicate their ideas with their peers		
• Apply other big ideas and concepts in calculus		
to trigonometric fuctions.		

Prerequisite Concepts and Skills:

Students will have already learned and reviewed PreCalc 11 trigonometric functions.

Indigenous Connections/ First Peoples Principles of Learning:

I was unable to make a meaningful connection to the FPPL

Universal Design for Learning (UDL):

Students will be given both individual and group work \underline{SEP} This lesson plan supports learners with multiple intelligences: \underline{SEP} Interpersonal – Reflecting on their own knowledge \underline{SEP} and reflecting on previous skills Existential – Students will be able to explore two of the big ideas in Calculus 12. They will also be supported by real world examples of math models. \underline{SEP} Bodily-Kinetic – Students will have to stand up and move around to complete the lesson \underline{SEP} Visual Spatial – Students will be given many visual examples of how the derivative of sinx is $cosx \underline{SEP}$ Interpersonal – Students will be asked to work in groups to solve problem \underline{SEP} Verbal-Linguistic – Students will be encouraged to communicate their learning verbally. They will also have to read the questions in the back of a textbook \underline{SEP} Logical Mathematical – This lesson will heavily support students with a logical mathematical brain

Differentiate Instruction (DI):

None of the students require DI

Materials and Resources

Computer, extra whiteboard markers, speaker and a projector

Lesson Activities:

Teacher Activities	Student Activities	Time
Introduction (anticipatory set – "HOOK"):	Students listen to introduction and	15 min
Tell students about cool news in math.	contribute to reviewing trig functions and	
https://phys.org/news/2020-10-interactions-larger-	what derivative is. They might even know	
social-groups-contagion.html	what the definition of a derivative is.	
I am first going to review trig functions.	They are expected to participate in lecture	
I am going to write derivative on the board and ask	and answer questions.	
students to verbally reflect on their learning. I will		
try to prompt them to see if they remember the		
mathematical definition of a derivative. If not I will		
write it on the board $\left(\frac{dy}{dx} = \lim_{h \to 0} \left(\frac{f(x-h) - f(x)}{h}\right)$		
Ask them which functions they have derived so		
far? $(\ln(x), e^x, x, n, n^x)$		
Ask them if there are any functions they haven't		
seen?		
Help them if needed, but all the trig functions,		
Body:	Student listen to lecture, take notes and	45 min
Say that I am going to prove that $d/dx \sin(x) =$	answer/ask questions.	
$\cos(x)$.		
Start by using the definition of derivative to solve		
sin(0) and $cos(0)$. Start will $sin(0)$ and demonstrate.		

Show them how to use desmos		
(https://www.desmos.com/calculator) to answer the		
question.		
Ask students to participate in solving cos(0).		
Use wolfram Alpha to solve cos(0)		
(https://www.wolframalpha.com/)		
Write both solutions in an important area of the		
board with a different coloured whiteboard marker.		
Solve the derivative of $sin(x)$.		
Show visualization of this video proof.		
Using a rock climber on a sin and cos graph and		
compare the two.		
Show them a visual representation of it (gif-		
https://www.gizmocrazed.com/2014/08/these-gifs-		
will-help-you-understand-math-concepts-better-		
than-your-teacher-ever-did/) Ask them to predict		
the derivative of $\cos(x)$.	Students will be asked to predict the	
Get them to stand up and try to prove it on the	derivative of cosx.	
white board in groups of 4.	They will be asked to separate into groups	
Provide remind them that identity 4 in there	and try to solve it on the white board.	
textbook on page 549 ($\cos(2u) = \cos^2(x) - \sin^2(x)$).	Students will be given the trig identities.	
Go between groups giving them clues when	Either in their textbook or their notes. The	
needed. Discuss the result and any issues with the	results will be discussed with the whole	
class.	class.	
Introduce them to the derivatives of the other trig		
identities. (tanx, cotx, secx, cscx)	They will take note of the other trig	
Prove that d/dx sec is equal to tanxsecx and d/dxcot	identities. They will also follow another	
$= -\csc^2 x$ Remind them of the quotient rule.	proof example.	
Divide them into groups of two and get them to try		
three different problem I placed on each	They will then be asked to go back the	
whiteboard. (One will be a chemistry problem -	white boards and solve different questions.	
***) We will then rotate groups and the second	The groups will rotate and they will	
group will assess the first groups work. We will	evaluate whether they agree or not with the	
then go over it as a class and they will be given	other groups answers. We will go over the	
time to write all three problems down.	solutions as a class.	
Closure	Studente will work on homework questions	15 min
Closule: Students will complete Homework questions from	students will work on nonework questions	13 11111
their textback on page 560	unun me oreak.	
HEII TEXTOOOK OII page 500 #7 0 12 17 10 22 20 22 24 41 44		
#1,7,13,17,17,23,27,33,34,41,44		
#1 and 2 These will be due at the end of class		

Organizational Strategies:

On the side of the whiteboard I will have the important equations displayed. Students will be given breaks in between lectures to work and apply their knowledge. I will let some students work through challenges. This depends on how the student learns best some students may need an answer presented in front of them immediately to proceed.

Proactive, Positive Classroom Learning Environment Strategies:

I plan on encouraging a positive learning environment by setting clear and consistent expectations, modeling positive and enthusiastic behaviour and by using lot of positive affirmations while speaking to and evaluating students.

Extensions:

The material covered in this lesson is going to be on their term test on Friday. A great extension to this would be to organize a physics or engineering guest speaker to discuss how calculus and trigonometry is an integral part of their career.

Reflections (if necessary, continue on separate sheet):